Books

Grading

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage of Final Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class participation & quizzes</td>
<td>20%</td>
</tr>
<tr>
<td>3-4 Programming Projects</td>
<td>30%</td>
</tr>
<tr>
<td>Midterm</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
</tr>
</tbody>
</table>

Grading Scale

- A: 93-100%
- A-: 90-92%
- B+: 86-89%
- B: 83-85%
- B-: 80-82%
- C+: 76-79%
- C: 73-75%
- C-: 70-72%
- D+: 66-69%
- D: 63-65%
- D-: 60-62%
- F: BELOW 60%

Program Submissions

- All programs will be submitted using Brightspace. A drop box will be created for each program. You will also need to submit a printed copy of your source code and a readme file. DO NOT submit programs that are not reasonably correct. To be considered reasonably correct, a program must be completely documented and work correctly for sample data provided with the assignment. Programs failing to meet these minimum standards will be returned ungraded and a 30% penalty assessed. Late points, 10% per day, will be added on top of this penalty.
- **Ethics:** All programming assignments must be your own work. Duplicate or similar programs/reports, plagiarism, cheating, undue collaboration, or other forms of academic dishonesty will be reported to the Student Disciplinary Office as a violation of the Student Honor Code.

Algorithm

A procedure for solving a computational problem (ex: sorting a set of integers) in a finite number of steps.

More specifically: a step-by-step procedure for solving a problem or accomplishing something (especially using a computer).

Solving a Computational Problem

- Problem definition & specification
 - specify input, output and constraints
- Algorithm analysis & design
 - devise a correct & efficient algorithm
- Implementation planning
- Coding, testing and verification

\[\text{Input} \rightarrow \text{Algorithm} \rightarrow \text{Output} \]

Examples

- RSA
- Cryptography
- Quicksort
- Databases
- FFT
- Signal processing
- Huffman codes
- Data compression
- Network flow
- Routing Internet packets
- Linear programming
- Planning, decision-making
What is CS435/535?

- Learn well-known algorithms and the design and analysis of algorithms.
- Examine interesting problems.
- Devise algorithms for solving them.
- Data structures and core algorithms.
- Analyze running time of programs.
- Critical thinking.

Chapter 0: Big-O notation

Asymptotic Complexity

- Running time of an algorithm as a function of input size n for large n.
- Expressed using only the highest-order term in the expression for the exact running time.
- Instead of exact running time, say $\Theta(n^2)$.
- Describes behavior of function in the limit.
- Written using Asymptotic Notation.

Asymptotic Notation

- Θ, O, Ω, o, ω
- Defined for functions over the natural numbers.
- Ex: $f(n) = \Theta(n^2)$.
- Describes how $f(n)$ grows in comparison to n^2.
- Define a set of functions; in practice used to compare two function sizes.
- The notations (Θ, O, Ω, o, ω) describe different rate-of-growth relations between the defining function and the defined set of functions.

O-notation

For function $g(n)$, we define $O(g(n))$, big-O of n, as the set:

$$O(g(n)) = \{ f(n) : \exists \text{ positive constants } c, n_0 \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq f(n) \leq cg(n) \}$$

Intuitively: Set of all functions whose rate of growth is the same as or lower than that of $g(n)$.

$g(n)$ is an asymptotic upper bound for $f(n)$.

Examples

$$O(g(n)) = \{ f(n) : \exists \text{ positive constants } c, n_0 \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq f(n) \leq cg(n) \}$$

- $O(n^2)$
- $n^2 + 1$
- $n^2 + n$
- $1000n^2 + 1000n$
- $n^{1.99}$
- $n^2 / \log n$
- $n^2 / \log \log n$
Ω -notation

For function \(g(n) \), we define \(\Omega(g(n)) \), big-Omega of \(n \), as the set:

\[
\Omega(g(n)) = \{ f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{such that } \forall n \geq n_0, \text{ we have } 0 \leq cg(n) \leq f(n) \}
\]

Intuitively: Set of all functions whose rate of growth is the same as or higher than that of \(g(n) \).

\(g(n) \) is an asymptotic lower bound for \(f(n) \).

Example

\[
\Omega(g(n)) = \{ f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{such that } \forall n \geq n_0, \text{ we have } 0 \leq cg(n) \leq f(n) \}
\]

- \(\sqrt{n} = \Omega(\log n) \). Choose \(c \) and \(n_0 \).
- \(1000n^2 + 1000n \)
- \(1000n^2 - 1000n \)
- \(g^3 \)
- \(g^{2.0001} \)
- \(n^2 \log \log \log n \)
- \(2^e \)

Θ -notation

For function \(g(n) \), we define \(\Theta(g(n)) \), big-Theta of \(n \), as the set:

\[
\Theta(g(n)) = \{ f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq c_1g(n) \leq f(n) \leq c_2g(n) \}
\]

Intuitively: Set of all functions that have the same rate of growth as \(g(n) \).

\(g(n) \) is an asymptotically tight bound for \(f(n) \).

Example

\[
\Theta(g(n)) = \{ f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq c_1g(n) \leq f(n) \leq c_2g(n) \}
\]

- \(10n^2 - 3n = \Theta(n^2) \)

To compare orders of growth, look at the leading term.

Exercise: Prove that \(n^2/2-3n= \Theta(n^2) \)

Relations Between \(O, \Omega, \Theta \)

Exercise

\(n-10^6 = \Omega(n) \)
Example

- Is $3n^3 = \Theta(n^4)$?
- How about $2^{2n} = \Theta(2^n)$?
- How about $\log_2 n = \Theta(\log_{10} n)$?

Relations Between Θ, Ω, O

- Theorem: For any two functions $g(n)$ and $f(n)$, $f(n) = \Theta(g(n))$ iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

Comparison of Functions

- $f \leftrightarrow g \sim a \leftrightarrow b$
- $f(n) = O(g(n)) \sim a \leq b$
- $f(n) = \Omega(g(n)) \sim a \geq b$
- $f(n) = \Theta(g(n)) \sim a = b$
- $f(n) = o(g(n)) \sim a < b$
- $f(n) = \omega(g(n)) \sim a > b$

Properties of a relation $R\equiv\{(a,b)\}$

- Transitive
- Reflexive, irreflexive
- Symmetric, antisymmetric, asymmetric
- Partial order: reflexive, antisymmetric, and transitive.

Relations

- $R=\{(f(n), g(n)) \mid f(n) = O(g(n))\}$
- $R=\{(f(n), g(n)) \mid f(n) = \Omega(g(n))\}$
- $R=\{(f(n), g(n)) \mid f(n) = \Theta(g(n))\}$
- $R=\{(f(n), g(n)) \mid f(n) = o(g(n))\}$
- $R=\{(f(n), g(n)) \mid f(n) = \omega(g(n))\}$

Properties

- Transitivity
 - $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
 - $f(n) = O(g(n))$ and $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
 - $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$
 - $f(n) = o(g(n))$ and $g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$
 - $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$

- Reflexivity
 - $f(n) = \Theta(f(n))$
 - $f(n) = O(f(n))$
 - $f(n) = \Omega(f(n))$
Properties

- **Symmetry**
 \[f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n)) \]
 YES

- **Antisymmetry**
 \[f(n) = \Omega(g(n)) \land g(n) = \Omega(f(n)) \Rightarrow f(n) = g(n) \]
 NO

- **Asymmetric**
 \[f(n) = o(g(n)) \Rightarrow g(n) \neq o(n) \]
 NO

- **Complementarity**
 \[f(n) = \Theta(g(n)) \iff g(n) = \Omega(f(n)) \]
 YES

Limits

- \[\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \Leftrightarrow f(n) = \Theta(g(n)) \]

- \[0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \Leftrightarrow f(n) = \Theta(g(n)) \]

- \[0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} \Leftrightarrow f(n) = \Omega(g(n)) \]

- \[\lim_{n \to \infty} \frac{f(n)}{g(n)} \] undefined \Rightarrow can’t say, need special attention

complexity classes

<table>
<thead>
<tr>
<th>adjective</th>
<th>(\Theta)-notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>logarithmic</td>
<td>(\Theta(\log n))</td>
</tr>
<tr>
<td>linear</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>nlogn</td>
<td>(\Theta(n \log n))</td>
</tr>
<tr>
<td>quadratic</td>
<td>(\Theta(n^2))</td>
</tr>
<tr>
<td>cubic</td>
<td>(\Theta(n^3))</td>
</tr>
<tr>
<td>exponential</td>
<td>(\Theta(2^n))</td>
</tr>
<tr>
<td>exponential</td>
<td>(\Theta(10^n))</td>
</tr>
</tbody>
</table>

Ch1